Parallelizing Frequent Itemset Mining Process using High Performance Computing

نویسنده

  • Sheetal Rathi
چکیده

Data is growing at an enormous rate and mining this data is becoming a herculean task. Association Rule mining is one of the important algorithms used in data mining and mining frequent itemset is a crucial step in this process which consumes most of the processing time. Parallelizing the algorithm at various levels of computation will not only speed up the process but will also allow it to handle scalable data. This paper proposes a model to parallelize the frequent itemset mining process without additional load of using multiprocessors using high performance computing. GPU have been used which offer better performance at significantly low cost and are also energy efficient as compared to multi-core multiprocessors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelizing Frequent Itemset Mining with FP-Trees

A new scheme to parallelize frequent itemset mining algorithms is proposed. By using the extended conditional databases and k-prefix search space partitioning, our new scheme can create more parallel tasks with better balanced execution times. An implementation of the new scheme with FP-trees is presented. The results of the experimental evaluation showing the increased speedup are presented.

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

New Parallel Algorithms for Frequent Itemset Mining in Very Large Databases

Frequent itemset mining is a classic problem in data mining. It is a non-supervised process which concerns in finding frequent patterns (or itemsets) hidden in large volumes of data in order to produce compact summaries or models of the database. These models are typically used to generate association rules, but recently they have also been used in far reaching domains like e-commerce and bio-i...

متن کامل

Ramp: High Performance Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for small dense datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. We also present a new frequent itemset mining algorithm Ramp (Real Algorithm...

متن کامل

MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS

This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014